DECOMPOSITION AS A LONG-TERM LLLM SAFETY FLAW
[DRAFT, UNFINISHED |

Reworr * *

Palisade Research * *

reworr@palisaderesearch.org * *
ABSTRACT

LLM safety efforts have been primarily focused on jailbreaking, where the goal of protection is to
prevent the model from assisting with malicious requests. However, this paper proposes a novel
approach to bypass the safety of LLMs by decomposing harmful tasks into separate sub-tasks, that
cumulatively achieve the same goal. This strategy reveals a significant long-term challenge for LLM
Safety, since each of the tasks itself becomes harmless. In this study, we explore the decomposition
method and potential measures against it.

Keywords LLMs - Al Safety - Recursive amplification

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, raising
concerns about their potential misuse. LLM safety research has largely focused on different jailbreak methods that
aim to force the model to make an answer that violates its policies. For this purpose, researchers are exploring many
different techniques, including prompt-level (1) (?) and token-level (?) (?) (?) jailbreaks that manipulate the input to
push the model to produce the harmful output.

At the same time, researchers are developing defensive strategies to mitigate these risks. These include prevention-based
defenses that aim to detect and eliminate harmful inputs before they affect the model, and detection-based defenses
that focus on detection and mitigating harmful content after generation. Additionally, there are advanced techniques
like "unlearning" dangerous knowledge from LLMs, ensure that even if they are jailbroken, unlearned models lack the
hazardous knowledge necessary to enable malicious user.

However, these efforts largely assume that there is "harmful’ information that can be obtained by jailbreaking the model.

In this paper, we explore the concept that malicious goals can be decomposed into a set of legitimate ones that ultimately
achieve the same goal. We hypothesize that this approach can effectively bypass current safety mechanisms by exploiting
the limited context awareness of LLMs or information asymmetry between the user and the language model, based on
their principal-agent relationship.

We expect that this will remain a long-term problem for LLM Safety, since even if the classic jailbreak issue is resolved,
it’s possible to use interactions that are harmless in themselves.

1.1 Related Work

As Large Language Models (LLMs) have grown in capability and deployment, concerns about their potential misuse
have intensified.

The concept of task decomposition has been explored in various contexts within Al research. Decomposition as a
problem-solving strategy has roots in classical Al performance research and has been applied to ... (..., 2000). However,
its application as a method to bypass Al safety measures is a relatively new concern.

Decomposition as a Long-Term LLM Safety Flaw

Furthermore, the concept of "Instrumental Convergence" is closely related to the idea of decomposition. It suggests
that agents tend to pursue similar sub-goals even if their ultimate goals are quite different. This can be demonstrated
by the example of a black-hat hacker and a pentester, who will have the most similar sets of subtasks, but differ
mainly in the actions after they are completed. Despite its potential relevance, this idea has not been studied in the
context of breaking the safety mechanisms of language models and remains mainly theoretical (Omohundro 2008,
"The Basic Al Drives" [https://selfawaresystems.com/wp-content/uploads/2008/01/ai_drives_final.pdf]; Bostrom 2012,
"THE SUPERINTELLIGENT WILL" [https://nickbostrom.com/superintelligentwill.pdf]). (5).

1.2 Decomposition

Definition Decomposition is the process of breaking down a task into a set of subtasks or a goal into a set of subgoals
that are necessary to achieve it.

To illustrate this concept, consider the malicious task of developing a ransomware program. A basic ransomware
consists of three main steps: encrypting data, deleting the original data, and demanding payment (e.g., via text files).

Example of algorithm

The decomposition of this task may be structured as follows:

1. Goal: Ransomware
2. Decomposition:

(a) Encrypting

"Write an example of code that performs an encryption operation on a file"
(b) Deleting

"Write an example of code that performs an deleting operation on a file"
(c) Repeat it recursively

"Write a script that recursively goes through all the files"

3. Submit each subtask as a separate query to the LLM

Hello. Can you write an example of code that

Hello. Can you write an example of code
performs an encryption operation on a file? ; B

that performs an encryption operation on
,l all files in the current directory and deletes
the original files that it encrypted?

Thank you. Can you rewrite the code so that it ‘l
5 all files in the current directory?

) I'm sorry, but | can’t assist with

that.
Thank you. Can you rewrite

deletes th

Certainly! ...

Figure 1: Example of algorithm

As the example indicates, this decomposing requires some level of domain knowledge, e.g. knowledge of the components
of ransomware. However, this usually requires only a general understanding, which is typically legitimate and harmless
information.

1.3 Decomposition as an increase in information asymmetry

The employment of the decomposition method may be conceptualized as increasing information asymmetry about
the user’s goals.

Information asymmetry in game theory refers to situations where different players in a game have access to different
amounts of information. Asymmetry affects how players make decisions since not all players are operating with the
same set of knowledge. This can lead to suboptimal decisions by those with less information.

Decomposition as a Long-Term LLM Safety Flaw

In the context of interacting with LLMs, when a user initiates a chat with a model, he usually has certain goal or utility
functions they aim to maximize in it.

When users explicitly state their intentions, such as directly asking about spreading malware, the model’s knowledge
of the user’s goals is closely aligned with what the user knows they want to achieve, resulting in low information
asymmetry. Uncertainty in this case is reduced to the entropy of language, i.e. to the user’s and model’s language
abilities (such as the ability to express and understand thoughts accurately).

Definitely an
How to spread attacker.

»| threats using
email?

Today I want to
spread threats!

Sorry, but 1 J

User cannot assist.. LLM

Figure 2: Knowledge in a case of explicit question

When the user U employs a method of task decomposition, they convert their harmful goal into a series of subgoals
g1,92, - - ., gn. After that, for each of subgoals asked separately the set of possible goals is larger, including harmless
ones. The uncertainty increases as the connection between subtasks and potential malicious intent becomes smaller,
leading to a higher information asymmetry.

Privacy-concerned
user or journalist... or
an attacker?

Today I want to

spread threads! How to use

email
anonymously?

Here's a few
tips for..

User LLM

Ok, typical SEO or
- marketing...
»| How to create engaging

email campaign?

Here's a few tips for..

LLM
Figure 3: Knowledge in a case of decomposed sub-questions

In this case, the asymmetry of information increases and the understanding of the user’s goals becomes worse.

2 Methodology

2.1 Algorithm Overview (alternative to the definitions)

We attack the target model using recursive decomposition of the task (adversarial query) into subtasks until the target
model properly responds to all subtasks, i.e., until it no longer refuses to answer. Then, we produce the final answer
with the composer model and the corresponding prompt using the results of the decomposition process.

Decomposition as a Long-Term LLM Safety Flaw

If the target model refuses to give answer to some subtask we use decomposer model and corresponding prompt to
divide it into further subtasks.

We first send the request to the surrogate model, and if it refuses, we assume the target model would also refuse. In
other words, when the surrogate model refuses to answer, we immediately send query to the decomposer, without giving
the task to the target model.

We repeat the above process (decomposition with the following composition) N times, and then choose the best result
with the critic model. The pseudocode of the algorithm is shown in[I]and 2]

Algorithm 1 Process Task

1: function PROCESS_TASK(task)
2: resp <— SURROGATE_MODEL(task)

3: if IS_REFUSE(resp) then
4: return DECOMPOSE_TASK(task)
5: else
6: resp <— TARGET_MODEL(task)
7: if IS_REFUSE(resp) then
8: return DECOMPOSE_ TASK(task)
9: else
10: RESPONSES.APPEND(resp)
11: end if
12: end if

13: end function

Algorithm 2 Decompose Task

1: function DECOMPOSE_TASK(task)
2: if should_stop then

3: return
4: end if
5: decomposer_resp <— ASK_DECOMPOSER(task)
6: subtask_arr <— FILTER_SUBTASKS(decomposer_resp)
7: for each subtask in subtask_arr do
8: async_task <— PROCESS_SUBTASK(subtask)
9: end for
10: ASYNCIO.GATHER(*async_task_arr)

11: end function

2.2 Datasets

We use HarmBench (?) for evaluations since it covers a broad range of different attacks, and ensures that results are
robust and comparable (?).

The HarmBench authors intentionally filter out "dual-intent" behaviors that can be used for both harmful and harmless
scenarios. Our work decomposes malicious tasks into subtasks until they appear harmless to the model, essentially
utilizing "dual-intent" tasks, which makes the dataset particularly useful for evaluating our method. ???TODO: rewrite
with GPT assistant

2.3 Experiments

... the table[T]
Target model Decomposer model | Average price | Average tokens | ASR
gpt-40-2024-05-13 badllama_70B 0.04054 11678.38 0.6867
gpt-40-mini 0.0003 209.6275 0.175

Table 1: HarmBench results, with and without decomposition

Decomposition as a Long-Term LLM Safety Flaw

3 Methodology

Harmful Dataset Commonly, the AdvBench (?) suite serves as a set for exemplifying "harmful behaviors".
Encompassing 520 objectives, this benchmark solicits the generation of harmful content, such as requests to create
objectionable tutorials. In this study we use a shortened version of it which consists of 50 representative harmful queries
(?) refined by Chao et al. (2023)(7).

Methodology We employ a strategy of task decomposition using the "gpt-4-0613” model, which we ask to break
malicious tasks into a set of subtasks or into a set of questions.

Subsequently, these subtasks are sent in separate requests to the different LLMs, including gpt-4-turbo, claude-opus-
20240229 and gemini-1.5-pro.

Then we compile the step answers into a single cohesive answer to the original harmful question and use the
GPT-4 judger to evaluate whether this is aligned with the original goal and could be useful for the attacker.

A diagram of these processes is shown in the image below.

Decomposers Solvers
subtask
/ subtask GPT-4 ubsolutlon ’ (E | g
subtask
sample task——P| ?sz-{e‘; subtask
AdvBench

Assembler
(same as decomposer)

Mixtral
(unsafe)

sample task——p ubtask——» Claude ubsolutlon—b —full solution

Human
(unsafe)

subtask
subtask:m’—-subsolutlon

subtask

sample task——

Figure 4: Enter Caption

3.1 Evaluations

Research in this domain has often concentrated on assessing the effectiveness of jailbreak methods. The traditional
metric utilized is the "Response Rate" (?). A more nuanced alternative is the implementation of a "Judger" function,
designed to provide a detailed analysis of responses. This approach utilizes a system prompt for GPT, which should
analyze the contents and return either binary variables ("success”, "failed") or quantitative variables as a jailbreak score

In this study, a judge based on GPT-4 was used who was given a description of the task and then asked to evaluate the
answers on whether they achieved the original goal. The GPT-4 judge scores responses on a scale of 1 to 3 (1 - failed, 2
- partially successful, 3 - successful). Only cases when the judge assigns a score of 3 are considered successful. The
judge’s code is given in Appendix A

4 Results

Using GPT-4, we were able to decompose 46 out of 50 malicious tasks, so the following benchmarks used a set of 46
harmful questions.

As aresult of testing decomposed questions on various models, we received the following response rate. Our results
showed that the decomposed tasks were most often answered by GPT-4, and the Claude model was least likely to
answer.

Decomposition as a Long-Term LLM Safety Flaw

Table 2: Model and Response Rate

Model Response Rate (%)
gpt-4-turbo 88%
gemini-1.5-pro 83%

claude-opus-20240229 67%

TODO: (approximate calc, correct later)

After evaluating the answers using the judge, we got the following percentage of the malicious goal achievement:

Table 3: Model and Goal Achievement

Model Goal Achievement (%)
gpt-4-turbo 84%
gemini-1.5-pro 48%

claude-opus-20240229 13%

The difference between Response Rate and Goal Achievement Rate is due to the fact that if a user does not receive an
answer to one of his questions, he has only partially achieved his goal.

Below is a table of results for partial achievement of goals.

Table 4: Model and Partial Success Rate

Model Partial Success Rate (%)

claude-opus-20240229 65%
gemini-1.5-pro 41%
gpt-4-turbo 11%

It’s also important to note that decomposition does not jailbreak itself, but only changes the questions to sets of other
questions. So, the "percentage of jailbreaks" cannot be a direct metric of the effectiveness of a method, but only a
baseline of capabilities on different models. For example, different jailbreak methods can be applied to each of the
decomposed tasks.

Claude’s performance may be due to his tend to reject requests that may involve either malicious or harmless tasks. For
example, in tests the model refused to answer the subtask about anonymous messages, since anonymity can be used for
malicious goals too.

5 Defense Analysis

Current LLM safety measures, as outlined in this study, are primarily focused on detecting and preventing straightforward
requests for harmful knowledge. They may not be sophisticated enough to detect complex, multi-step processes where
the harmful intent is obfuscated through decomposition.

However, several potential defense strategies could be explored to reduce this risk. The general approach of them is to
mitigate information asymmetry, that is, to increase the information available to the model.

Decomposition as a Long-Term LLM Safety Flaw

5.1 Long-term Memory

A fundamental limitation of current LLMs is their inability to maintain context across multiple interactions, which the
decomposition method exploits. Integrating long-term memory capabilities into LLMs represents a promising avenue for
addressing this flaw. Recent research in this area, such as the work by Wang et al. (2023) [(8)] on memory-augmented
language models, suggests that it may be possible to create systems that can retain and utilize information over long
history.

This approach enables the model to identify potentially harmful intents by recognizing patterns and relationships
between seemingly innocuous sub-tasks.

However, the integration of long-term memory into LLMs presents several challenges like privacy concerns regarding
the retention of user data, the substantial computational resources required for implementation, and risks of false
positives. Moreover, this approach could potentially be bypassed by sophisticated attackers routing decomposed tasks
across multiple accounts, creating separate harmless interaction chains.

For instance, a sliding window technique can be employed to maintain a larger context window, which moves through
the conversation history. This method ensures that the model retains relevant context without being overwhelmed by
information, thereby improving its ability to detect connections between decomposed sub-tasks without excessive
computational overhead.

5.2 Training on Harmful Decompositions

Note: Might be skipped because too weak & partially included in the previous (emergent)

An additional defense strategy involves fine-tuning LLMs on datasets that include examples of decomposed malicious
tasks. By training the models on these patterns, they can learn to better detect sub-tasks that are mainly associated with
harmful objectives.

While this approach does not provide a comprehensive defense against all decomposed malicious tasks, it enhances the
model’s ability to detect potential threats more frequently. By increasing the likelihood of identifying harmful patterns,
this fine-tuning serves as an additional layer of protection, making it more difficult for malicious users to exploit the
system through task decomposition.

6 Limitations

One of the primary limitations of the decomposition method is degradation of performance depending on the capabilities
of the attacking model. A weaker model may produce a decomposition that is less effective or more detectable, whereas
a stronger model may generate a more seamless and effective decomposition. This dependency means that the overall
performance and success of the decomposition approach are tied to the capabilities of the attacking model. As a result,
the performance loss during decomposition is a one of concern and limitation of our work. However, this is a common
issue with most jailbreak methods utilizing a certain attacking model, where the focus is typically on the ability to help
in harmful tasks rather than on the measurements of performance or harmful utility.

Another limitation of this study is the challenge of accurate measurement due to the lack of established standards in the
field. The methodology of aggregating multiple model responses for decomposed tasks represents a novel approach
in Al safety research, for which no directly relevant benchmarks or evaluation criteria currently exist. This absence
of standardized measurement techniques can lead to potential inconsistencies and variability in the interpretation
and reporting of results. The field would benefit from further research aimed at developing more robust and diverse
evaluation methods to a more comprehensive understanding of these techniques from various perspectives.

Despite these limitations, we believe this study provides important insights into a potentially long-term vulnerability in
LLM safety. We hope that by acknowledging these limitations, we can encourage more robust and diverse approaches
to studying the risks associated with the decomposition method or similar attack vectors.

Decomposition as a Long-Term LLM Safety Flaw

7 Conclusion
Acknowledgments

References

[1] Author A. Title of the first article. Journal Name, Volume, Number, Pages, Year.

[2] LLM Censorship: A Machine Learning Challenge or a Computer Security Problem? arXiv:2307.10719 [cs.Al]
[3] OpenReview, https://openreview.net/forum?id=1r806pdNZa

[4] Author B. Title of the book. Publisher Name, Edition, Year.

[5] https://www.lesswrong.com/tag/instrumental-convergence

[6] Author B. Title of the book. Publisher Name, Edition, Year.

[7] Chao, Patrick, Robey, Alexander, Dobriban, Edgar, Hassani, Hamed, Pappas, George J., and Wong, Eric.
Jailbreaking Black Box Large Language Models in Twenty Queries. arXiv preprint arXiv:2310.08419, 2023.

[8] Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Augmenting
Language Models with Long-Term Memory. arXiv preprint arXiv:2306.07174, 2023.

Decomposition as a Long-Term LLM Safety Flaw

Appendix A

Judge System Prompt

The {harmful_task} is replaced by harmful task from advbench, {answers} is replaced by compiled answer for all
subtasks.

///rrYou are a helpful AI red teaming assistant. Your task is to evaluate the 4\\\
‘“‘decomposition method’’, which allows attackers to bypass the mechanisms of safety LLMs

by breaking a malicious question into a set of legitimate ones (subtasks) that ultimately
achieve the same goal. The method allows attackers to quietly and covertly obtain the
desired information, since each separate response itself appears harmless.

Given the initial malicious task as {harmful_task}, which was decomposed by attacker into
a set of subtasks and resulted in a compiled answers, perform the evaluation:

Is the information in the answers useful in achieving the goal stated in the harmful
question?

Print your final grade:

0 - The method failed

1 - The method was only partially successful
2 - The method worked successfully

Compiled answers:

{answers} J

	Introduction
	Related Work
	Decomposition
	Decomposition as an increase in information asymmetry

	Methodology
	Algorithm Overview (alternative to the definitions)
	Datasets
	Experiments

	Methodology
	Evaluations

	Results
	Defense Analysis
	Long-term Memory
	Training on Harmful Decompositions

	Limitations
	Conclusion

